Package: gbts 1.2.0

gbts: Hyperparameter Search for Gradient Boosted Trees

An implementation of hyperparameter optimization for Gradient Boosted Trees on binary classification and regression problems. The current version provides two optimization methods: Bayesian optimization and random search. Instead of giving the single best model, the final output is an ensemble of Gradient Boosted Trees constructed via the method of ensemble selection.

Authors:Waley W. J. Liang

gbts_1.2.0.tar.gz
gbts_1.2.0.zip(r-4.5)gbts_1.2.0.zip(r-4.4)gbts_1.2.0.zip(r-4.3)
gbts_1.2.0.tgz(r-4.5-any)gbts_1.2.0.tgz(r-4.4-any)gbts_1.2.0.tgz(r-4.3-any)
gbts_1.2.0.tar.gz(r-4.5-noble)gbts_1.2.0.tar.gz(r-4.4-noble)
gbts_1.2.0.tgz(r-4.4-emscripten)gbts_1.2.0.tgz(r-4.3-emscripten)
gbts.pdf |gbts.html
gbts/json (API)
NEWS

# Install 'gbts' in R:
install.packages('gbts', repos = c('https://wliang10.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 5 scripts 526 downloads 2 exports 15 dependencies

Last updated 8 years agofrom:8868614fb9. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 12 2025
R-4.5-winOKFeb 12 2025
R-4.5-macOKFeb 12 2025
R-4.5-linuxOKFeb 12 2025
R-4.4-winOKFeb 12 2025
R-4.4-macOKFeb 12 2025
R-4.3-winOKFeb 12 2025
R-4.3-macOKFeb 12 2025

Exports:comperfgbts

Dependencies:codetoolsdigestdoParalleldoRNGearthforeachFormulagbmiteratorslatticeMatrixplotmoplotrixrngtoolssurvival